top of page

Resume

Full CV and publication list can be found here.

Education and employment
 

2022 - present

Carnegie-Princeton Fellow

Carnegie Observatories.

2019 - 2022

Ph.D. in Physics

Department of Astrophysics, Tel Aviv University. Thesis in the field of supermassive black holes and their impact on their hosts galaxies, under the supervision of prof. Hagai Netzer.

2017 - 2019

M.Sc. in Physics

Department of Astrophysics, Tel Aviv University. Thesis in the field of Active Galactic Nuclei under the supervision of prof. Hagai Netzer.

2011 - 2017

B.Sc. in Physics
B.Sc. in Electrical Engineering

Tel Aviv University.

Specializations in EE:  Signal Processing and Electro-Optics.

Selected awards and honors

2022-2026

Carnegie-Princeton Research Fellowship

2021

The Asher Peres prize for excellent experimental Ph.D. student

Israel Physical Society.

2020

The Adams fellowship for excellent graduate students

The Israel Academy of Sciences and Humanities.

Additional details can be found here.

2020

The John Bahcall astrophysics graduate student prize for excellence in research

School of Physics and Astronomy, Tel-Aviv University.

List of publications

Summary: 26 total, 16 first author.

  26. PHANGS-ML: dissecting multiphase gas and dust in nearby galaxies using machine learning

D. Baron, ​K. M. Sandstrom, ​E. Rosolowsky, ​O. V. Egorov, ​R. S. Klessen, ​A. K. Leroy, et al. 

The Astronomical Journal, submitted (2024).

Link to Arxiv

  25. Not so windy after all: MUSE disentangles AGN-driven winds from merger-induced flows in rapidly-                          transitioning galaxies

D. Baron, H. Netzer, D. Lutz, R. Davies, and J. X. Prochaska.

The Astronomical Journal, submitted (2024).

Link to Arxiv

  24. Star formation and molecular gas properties of post-starburst galaxies.

D. Baron, H. Netzer, F. K. Decker, D. Lutz, R. Davies, and J. X. Prochaska..

Monthly Notices of the Royal Astronomical Society, 524, 2741B (2023).

Link to Arxiv.

  23. Multi-phase outflows in post starburst E+A galaxies -- I. General wind properties and the prevalence of                    starbursts.

D. Baron, H. Netzer, D. Lutz, J. X. Prochaska, and R. Davies.

Monthly Notices of the Royal Astronomical Society, 509, 4457B (2022).

Link to Arxiv.

  22. Extracting the main trend in a dataset: the Sequencer algorithm.

D. Baron and B. Ménard.

The Astronomical Journal, 916, 91 (2021).

Link to Arxiv.

  21. AGN-driven outflows and the AGN feedback efficiency in young radio galaxies.

F. Santoro, C. Tadhunter, D. Baron, R. Morganti and J. Holt.

Astronomy & Astrophysics, 644, id.A54, 38 pp (2020).

Link to Arxiv.

  20. Ionized outflows in local luminous AGN: what are the real densities and outflow rates?

R. Davies, D. Baron, T. Shimizu, H. Netzer, L. Burtscher, P.T. de Zeeuw, R. Genzel, E.K.S. Hicks, M. Koss, M.-Y. Lin, D. Lutz, W. Maciejewski, F. Müller-Sánchez, G. Orban de Xivry, C. Ricci, R. Riffel, R.A. Riffel, D. Rosario, M. Schartmann, A. Schnorr-Müller, J. Shangguan, A. Sternberg, E. Sturm, T. Storchi-Bergmann, L. Tacconi, and S. Veilleux.

Monthly Notices of the Royal Astronomical Society, 498, 4150 (2020).

Link to Arxiv.

  19. Sequencing Seismograms: A Panoptic View of Scattering in the Core-Mantle Boundary Region.

D. Kim, V. Lekic, B. Ménard, D. Baron and M. Taghizadeh-Popp.

Science, 368, issue 6496, pp. 1223 (2020).

Link to Arxiv.

  18. Multi-phase outflows in post starburst E+A galaxies - II. direct connection between neutral and ionized                    outflows in SDSS J124754.95-033738.6.

D. Baron, H. Netzer, R. I. Davies, and J. X. Prochaska.

Monthly Notices of the Royal Astronomical Society, 494, 5396 (2020).

Link to Arxiv.

  17. Exploring the Diversity of Type 1 Active Galactic Nuclei Identified in SDSS-IV/SPIDERS.

J. Wolf, M. Salvato, D. Coffey, A. Merloni, J. Buchner, R. Arcodia, D. Baron, F. J. Carrera, J. Comparat, D. P. Schneider, and K. Nandra.

Monthly Notices of the Royal Astronomical Society, 492, 3580 (2020).

Link to Arxiv.

  16. The multiphase gas structure and kinematics in the circumnuclear region of NGC 5728.

T. Shimizu, R. I. Davies, D. Lutz, L. Burtscher, M. Lin, D. Baron, R. L. Davies, R. Genzel, E. K. S. Hicks, M. Koss, W. Maciejewski, F. Müller-Sánchez, G. O. de Xivry, S. H. Price, C. Ricci, R. Riffel, R. A. Riffel, D. Rosario, M. Schartmann, and A. Schnorr-Müller.

Monthly Notices of the Royal Astronomical Society, 490, 5860 (2019).

Link to Arxiv.

  15. Machine Learning in Astronomy: a practical overview.

D. Baron.

A review article published following a winter school in astronomy (2019).

Link to Arxiv.

  14. Black hole mass estimation for Active Galactic Nuclei from a new angle.

D. Baron and B. Ménard.

Monthly Notices of the Royal Astronomical Society, 487, 3404 (2019).

Link to Arxiv.

  13. Discovering AGN-driven winds through their infrared emission - II. Mass outflow rate and energetics.

D. Baron and H. Netzer.

Monthly Notices of the Royal Astronomical Society, 486, 4290 (2019).

Link to Arxiv.

  12. Discovering AGN-driven winds through their infrared emission - I. General method and wind location.

D. Baron and H. Netzer.

Monthly Notices of the Royal Astronomical Society, 482, 3915 (2019).

Link to Arxiv.

  11. Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets.

I. Reis, D. Baron, and S. Shahaf.

The Astronomical Journal, 157, 12 (2019).

Link to Arxiv.

  10. Direct evidence of AGN-feedback: a post starburst galaxy stripped of its gas by AGN-driven winds .

D. Baron, H. Netzer, J. X. Prochaska, Z. Cai, S. Cantalupo, D. C. Martin, M. Matuszewski, A. M. Moore, P. Morrissey, and J. D. Neill.

Monthly Notices of the Royal Astronomical Society, 480, 3993 (2018).

Link to Arxiv.

  9. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I--III.

T. Lan, B. Ménard, D. Baron, S. Johnson, D. Poznanski, J. X. Prochaska, and J. M. O’Meara.

Monthly Notices of the Royal Astronomical Society, 477, 3520 (2018).

Link to Arxiv.

  8. Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with                    APOGEE stars.

I. Reis, D. Poznanski, D. Baron, G. Zasowski, and S. Shahaf.

Monthly Notices of the Royal Astronomical Society, 476, 2117 (2017).

Link to Arxiv.

  7. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest.

Y. Vadai, D. Poznanski, D. Baron, P. Nugent, and D. Schlegel.

Monthly Notices of the Royal Astronomical Society, 472, 799 (2017).

Link to Arxiv.

  6. Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy.

D. Baron, H. Netzer, D. Poznanski, J. X. Prochaska, and N. M. Forster Schreiber.

Monthly Notices of the Royal Astronomical Society, 470, 1687 (2017).

Link to Arxiv.

  5. The weirdest SDSS galaxies: results from an outlier detection algorithm.

D. Baron and D. Poznanski.

Monthly Notices of the Royal Astronomical Society, 465, 4530 (2017).

Link to Arxiv.

  4. Evidence That Most Type-1 AGNs are Reddened by Dust in the Host ISM.

D. Baron, J. Stern, D. Poznanski, and H. Netzer.

The Astrophysical Journal, 832, 16 (2016).

Link to Arxiv.

  3. Using Machine Learning to classify the diffuse interstellar bands.

D. Baron, D. Poznanski, D. Watson, Y. Yao, N. L. J. Cox, and J. X. Prochaska.

Monthly Notices of the Royal Astronomical Society, 451, 332 (2015).

Link to Arxiv.

  2. SciDB for High-Performance Array-Structured Science Data at NERSC.

Y. Yao, B. P. Bowen, D. Baron, and D. Poznanski.

Computing in Science & Engineering, 17, 3, (2015).

  1. Dusting off the diffuse interstellar bands: DIBs and dust in extragalactic Sloan Digital Sky Survey spectra.

D. Baron, D. Poznanski, D. Watson, Y. Yao, and J. X. Prochaska. 

Monthly Notices of the Royal Astronomical Society, 447, 545 (2015).

Link to Arxiv.

Invited Lecturer in Advanced Schools

2023

Unsupervised Machine Learning methods

Vatican Observatory Summer School on Big Data and Machine Learning.

Castel Gandolfo, Italy.

More details here

2021

Applications of unsupervised learning to astronomical datasets.

IAA-CSIC Severo Ochoa School on Machine Learning, Big Data, and Deep Learning in Astronomy (SOMACHINE 2021).

Held online.

More details here

2018

Machine learning in astronomy.

AHEAD X-ray and Multi-wavelength school.

MPE Garching.

More details here.

2018

Machine learning methods for non-supervised classification and dimensionality reduction techniques.

Big Data in Astronomy Winter School.

Canary Islands.

More details here.

bottom of page